Machine Learning
Module to prepare and run machine learning (ML) in either a supervised or unsupervised fashion.
3 Classes for end user usage:
-
ClassificationModel For building ML models with categorical target data (classification).
-
RegressionModel For building ML models with continious target data (regression).
-
UnsupervisedModel For building ML models for datasets without labels. Limited support for this module at present.
These classes inherit first from an abstract base class called "_MachineLearnModel". which sets a basic outline for all 3 classes above.
Classes 1 and 2 then inherit from a parent class called "_SupervisedRunner" which abstracts as much as their shared behaviour as possible.
ClassificationModel
dataclass
Bases: _SupervisedRunner
Class to construct supervised machine learning models when the target class is categorical (aka classification).
Attributes
pd.DataFrame
Input dataset.
list
Names of the classes to train the model on. Can be left empty if you want to use all the classes you currently have. Default = [] (use all classes in the Target column.)
list
List of machine learning models/algorithims to use. Default = ["CatBoost"]
float
Ratio of data that should be used to make the evaluation test set. The rest of the data will be used for the training/hyper-param tuning. Default = 0.15
str
How to scale the dataset prior to machine learning. Options are "min_max" (scikit-learn's MinMaxScaler) or "standard_scaling" (scikit-learn's StandardScaler). Default = "min_max"
str
Directory path to store results files to. Default = ""
int
Number of splits in the cross validation, (the "k" in k-fold cross validation). Default = 5
int
Number of repeats for the k-fold cross validation to perform. Default = 3
str
Define how extensive the grid search protocol should be for the models. Options are: "none", "quick", "moderate", "exhaustive" or "custom". Default = "quick"
bool
Choose to weight each class according to the number of observations. (This can be used in the case of an imbalanced dataset.) The weights that will be used are the inverse of the class distribution so each class has effective weight 1 at the end. Default = False
dict
Nested dictionary of model parameters that can be read directly into Scikit-learn's implementation of grid search cv.
RepeatedStratifiedKFold
Instance of scikit-learn's RepeatedStratifiedKFold class for model building.
np.ndarray
All feature names/labels.
dict
Nested dictionary containing the training and testing data (both features and classes) needed to run the model building.
LabelEncoder
Instance of sci-kit learn's label encoder to encode the target classes. Required for the XGBoost model.
dict
Keys are the model name/method and values are the instance of the built model.
Methods
describe_ml_planned() Prints a summary of what machine learning protocol has been selected.
build_models(save_models) Runs the machine learning and summarizes the results.
evaluate_models() Evaluates each ML model's performance on the validation data set and provides the user with a summary of the results.
generate_confusion_matrix() For each ml model used, determine the confusion matrix from the validation dataset.
Source code in key_interactions_finder/model_building.py
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
|
__post_init__()
Setup the provided dataset and params for ML.
Source code in key_interactions_finder/model_building.py
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
|
evaluate_models()
Evaluates each ML model's performance on the validation data set and provides the user with a summary of the results.
Returns
dict A dictionary with keys being the model names and values being a pd.DataFrame with several scoring metrics output for each model used.
Source code in key_interactions_finder/model_building.py
generate_confusion_matrix()
For each ml model used, determine the confusion matrix from the validation data set. Returns a dictionary with model names as keys and the corresponding matrix as the values.
Returns
dict Keys are strings of each model name. Values are the confusion matrix of said model as a numpy.ndarray.
Source code in key_interactions_finder/model_building.py
RegressionModel
dataclass
Bases: _SupervisedRunner
Class to construct supervised machine learning models when the target class is contionous (aka regression).
Attributes
pd.DataFrame
Input dataset.
list
List of machine learning models/algorithims to use. Default = ["CatBoost"]
float
Ratio of data that should be used to make the evaluation test set. The rest of the data will be used for the training/hyper-param tuning. Default = 0.15
str
How to scale the dataset prior to machine learning. Options are "min_max" (scikit-learn's MinMaxScaler) or "standard_scaling" (scikit-learn's StandardScaler). Default = "min_max"
str
Directory path to store results files to. Default = ""
int
Number of splits in the cross validation, (the "k" in k-fold cross validation). Default = 5
int
Number of repeats for the k-fold cross validation to perform. Default = 3
str
Define how extensive the grid search protocol should be for the models. Options are: "none", "quick", "moderate", "exhaustive" or "custom". Default = "quick"
dict
Nested dictionary of model parameters that can be read directly into Scikit-learn's implementation of grid search cv.
RepeatedStratifiedKFold
Instance of scikit-learn's RepeatedStratifiedKFold class for model building.
np.ndarray
All feature names/labels.
dict
Nested dictionary containing the training and testing data (both features and classes) needed to run the model building.
dict
Keys are the model name/method and values are the instance of the built model.
Methods
describe_ml_planned() Prints a summary of what machine learning protocol has been selected.
build_models(save_models) Runs the machine learning and summarizes the results.
evaluate_models() Evaluates each ML model's performance on the validation data set and provides the user with a summary of the results.
Source code in key_interactions_finder/model_building.py
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 |
|
__post_init__()
Setup the provided dataset and params for ML.
Source code in key_interactions_finder/model_building.py
evaluate_models()
Evaluates each ML model's performance on the validation data set and provides the user with a summary of the results.
Returns
pd.DataFrame Dataframe with each row a containing several regression metrics for each ML model generated.
Source code in key_interactions_finder/model_building.py
UnsupervisedModel
dataclass
Bases: _MachineLearnModel
Class to construct machine learning models for when there is no target class available (aka, unsupervised learning).
At present there is limited support for this, with only principal component analysis (PCA) available.
Attributes
pd.DataFrame
Input dataset.
str
Directory path to store results files to. Default = ""
np.ndarray
All feature names/labels.
np.ndarray
Input dataset scaled with Standard scaling.
dict
Keys are the model name/method and values are the instance of the built model.
Methods
describe_ml_planned() Prints a summary of what machine learning protocol has been selected.
build_models(save_models) Runs the machine learning and summarizes the results.
Source code in key_interactions_finder/model_building.py
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 |
|
__post_init__()
Setup the provided dataset and params for ML.
Source code in key_interactions_finder/model_building.py
build_models(save_models=True)
Runs the machine learning and summarizes the results.
Parameters
bool
Whether to save the ML models made to disk. Default is True.
Source code in key_interactions_finder/model_building.py
describe_ml_planned()
Prints a summary of what machine learning protocol has been selected.